Serveur d'exploration sur Mozart

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

A direct carbon budgeting approach to infer carbon sources and sinks. Design and synthetic application to complement the NACP observation network

Identifieur interne : 000144 ( PascalFrancis/Corpus ); précédent : 000143; suivant : 000145

A direct carbon budgeting approach to infer carbon sources and sinks. Design and synthetic application to complement the NACP observation network

Auteurs : Cyril Crevoisier ; Manuel Gloor ; Erwan Gloaguen ; Larry W. Horowitz ; Jorge L. Sarmiento ; Colm Sweeney ; Pieter P. Tans

Source :

RBID : Pascal:07-0048412

Descripteurs français

English descriptors

Abstract

In order to exploit the upcoming regular measurements of vertical carbon dioxide (CO2) profiles over North America implemented in the framework of the North American Carbon Program (NACP), we design a direct carbon budgeting approach to infer carbon sources and sinks over the continent using model simulations. Direct budgeting puts a control volume on top of North America, balances air mass in- and outflows into the volume and solves for the surface fluxes. The flows are derived from the observations through a geostatistical interpolation technique called Kriging combined with transport fields from weather analysis. The use of CO2 vertical profiles simulated by the atmospheric transport model MOZART-2 at the planned 19 stations of the NACP network has given an estimation of the error of 0.39 GtC yr-1 within the model world. Reducing this error may be achieved through a better estimation of mass fluxes associated with convective processes affecting North America. Complementary stations in the north-west and the north-east are also needed to resolve the variability of CO2 in these regions. For instance, the addition of a single station near 52°N; 110°W is shown to decrease the estimation error to 0.34 GtC yr-1.

Notice en format standard (ISO 2709)

Pour connaître la documentation sur le format Inist Standard.

pA  
A01 01  1    @0 0280-6509
A02 01      @0 TSBMD7
A03   1    @0 Tellus, Ser. B Chem. phys. meteorol.
A05       @2 58
A06       @2 5
A08 01  1  ENG  @1 A direct carbon budgeting approach to infer carbon sources and sinks. Design and synthetic application to complement the NACP observation network
A09 01  1  ENG  @1 7th International CO2 Conference, Boulder, Colorado, 25-30 September 2005
A11 01  1    @1 CREVOISIER (Cyril)
A11 02  1    @1 GLOOR (Manuel)
A11 03  1    @1 GLOAGUEN (Erwan)
A11 04  1    @1 HOROWITZ (Larry W.)
A11 05  1    @1 SARMIENTO (Jorge L.)
A11 06  1    @1 SWEENEY (Colm)
A11 07  1    @1 TANS (Pieter P.)
A12 01  1    @1 TANS (Pieter P.) @9 ed.
A14 01      @1 Atmospheric and Oceanic Sciences, Princeton University, Sayre Hall, Forrestal Campus @2 Princeton, NJ 08544 @3 USA @Z 1 aut. @Z 2 aut. @Z 3 aut. @Z 5 aut.
A14 02      @1 Geophysical Fluid Dynamics Laboratory, Forrestal Campus, 201 Forrestal Road @2 Princeton, NJ 08540-6649 @3 USA @Z 4 aut.
A14 03      @1 NOAA/ESRL Global Monitoring Division (formerly CMDL), 325 Broadway R/GMD1 @2 Boulder, CO 80305-3328 @3 USA @Z 6 aut. @Z 7 aut.
A15 01      @1 NOAA/Climate Monitoring and Diagnostics Laboratory, 325 Broadway @2 Boulder, CO 80303 @3 USA @Z 1 aut.
A20       @1 366-375
A21       @1 2006
A23 01      @0 ENG
A43 01      @1 INIST @2 2121B @5 354000158790680040
A44       @0 0000 @1 © 2007 INIST-CNRS. All rights reserved.
A45       @0 13 ref.
A47 01  1    @0 07-0048412
A60       @1 P @2 C
A61       @0 A
A64 01  1    @0 Tellus. Series B, Chemical and physical meteorology
A66 01      @0 GBR
C01 01    ENG  @0 In order to exploit the upcoming regular measurements of vertical carbon dioxide (CO2) profiles over North America implemented in the framework of the North American Carbon Program (NACP), we design a direct carbon budgeting approach to infer carbon sources and sinks over the continent using model simulations. Direct budgeting puts a control volume on top of North America, balances air mass in- and outflows into the volume and solves for the surface fluxes. The flows are derived from the observations through a geostatistical interpolation technique called Kriging combined with transport fields from weather analysis. The use of CO2 vertical profiles simulated by the atmospheric transport model MOZART-2 at the planned 19 stations of the NACP network has given an estimation of the error of 0.39 GtC yr-1 within the model world. Reducing this error may be achieved through a better estimation of mass fluxes associated with convective processes affecting North America. Complementary stations in the north-west and the north-east are also needed to resolve the variability of CO2 in these regions. For instance, the addition of a single station near 52°N; 110°W is shown to decrease the estimation error to 0.34 GtC yr-1.
C02 01  2    @0 001E02D04
C02 02  X    @0 001D16C02
C03 01  2  FRE  @0 Troposphère @5 01
C03 01  2  ENG  @0 troposphere @5 01
C03 02  2  FRE  @0 Cycle carbone @5 02
C03 02  2  ENG  @0 carbon cycle @5 02
C03 03  X  FRE  @0 Bilan carboné @5 03
C03 03  X  ENG  @0 Carbon balance @5 03
C03 03  X  SPA  @0 Balance de carbono @5 03
C03 04  X  FRE  @0 Composé trace @5 04
C03 04  X  ENG  @0 Trace compound @5 04
C03 04  X  SPA  @0 Compuesto huella @5 04
C03 05  X  FRE  @0 Carbone dioxyde @2 NK @2 FX @5 05
C03 05  X  ENG  @0 Carbon dioxide @2 NK @2 FX @5 05
C03 05  X  SPA  @0 Carbono dióxido @2 NK @2 FX @5 05
C03 06  X  FRE  @0 Relation source puits @5 06
C03 06  X  ENG  @0 Source sink relationship @5 06
C03 06  X  SPA  @0 Relación fuente sumidero @5 06
C03 07  X  FRE  @0 Donnée observation @5 07
C03 07  X  ENG  @0 Observation data @5 07
C03 07  X  SPA  @0 Dato observación @5 07
C03 08  X  FRE  @0 Réseau observation @5 08
C03 08  X  ENG  @0 Observational network @5 08
C03 08  X  SPA  @0 Red observación @5 08
C03 09  X  FRE  @0 Densité flux @5 09
C03 09  X  ENG  @0 Flux density @5 09
C03 09  X  SPA  @0 Densidad flujo @5 09
C03 10  2  FRE  @0 Interpolation @5 10
C03 10  2  ENG  @0 interpolation @5 10
C03 11  2  FRE  @0 Krigeage @5 11
C03 11  2  ENG  @0 kriging @5 11
C03 12  2  FRE  @0 Géostatistique @5 12
C03 12  2  ENG  @0 geostatistics @5 12
C03 12  2  SPA  @0 Geoestadística @5 12
C03 13  X  FRE  @0 Estimation erreur @5 13
C03 13  X  ENG  @0 Error estimation @5 13
C03 13  X  SPA  @0 Estimación error @5 13
C03 14  2  FRE  @0 Cartographie @5 14
C03 14  2  ENG  @0 cartography @5 14
C03 14  2  SPA  @0 Cartografía @5 14
C03 15  2  FRE  @0 Amérique du Nord @5 28
C03 15  2  ENG  @0 North America @5 28
C03 15  2  SPA  @0 America del norte @5 28
C03 16  2  FRE  @0 Gaz effet serre @5 36
C03 16  2  ENG  @0 greenhouse gas @5 36
N21       @1 029
pR  
A30 01  1  ENG  @1 International CO2 Conference @2 7 @3 Boulder, CO USA @4 2005-09-25

Format Inist (serveur)

NO : PASCAL 07-0048412 INIST
ET : A direct carbon budgeting approach to infer carbon sources and sinks. Design and synthetic application to complement the NACP observation network
AU : CREVOISIER (Cyril); GLOOR (Manuel); GLOAGUEN (Erwan); HOROWITZ (Larry W.); SARMIENTO (Jorge L.); SWEENEY (Colm); TANS (Pieter P.); TANS (Pieter P.)
AF : Atmospheric and Oceanic Sciences, Princeton University, Sayre Hall, Forrestal Campus/Princeton, NJ 08544/Etats-Unis (1 aut., 2 aut., 3 aut., 5 aut.); Geophysical Fluid Dynamics Laboratory, Forrestal Campus, 201 Forrestal Road/Princeton, NJ 08540-6649/Etats-Unis (4 aut.); NOAA/ESRL Global Monitoring Division (formerly CMDL), 325 Broadway R/GMD1/Boulder, CO 80305-3328/Etats-Unis (6 aut., 7 aut.); NOAA/Climate Monitoring and Diagnostics Laboratory, 325 Broadway/Boulder, CO 80303/Etats-Unis (1 aut.)
DT : Publication en série; Congrès; Niveau analytique
SO : Tellus. Series B, Chemical and physical meteorology; ISSN 0280-6509; Coden TSBMD7; Royaume-Uni; Da. 2006; Vol. 58; No. 5; Pp. 366-375; Bibl. 13 ref.
LA : Anglais
EA : In order to exploit the upcoming regular measurements of vertical carbon dioxide (CO2) profiles over North America implemented in the framework of the North American Carbon Program (NACP), we design a direct carbon budgeting approach to infer carbon sources and sinks over the continent using model simulations. Direct budgeting puts a control volume on top of North America, balances air mass in- and outflows into the volume and solves for the surface fluxes. The flows are derived from the observations through a geostatistical interpolation technique called Kriging combined with transport fields from weather analysis. The use of CO2 vertical profiles simulated by the atmospheric transport model MOZART-2 at the planned 19 stations of the NACP network has given an estimation of the error of 0.39 GtC yr-1 within the model world. Reducing this error may be achieved through a better estimation of mass fluxes associated with convective processes affecting North America. Complementary stations in the north-west and the north-east are also needed to resolve the variability of CO2 in these regions. For instance, the addition of a single station near 52°N; 110°W is shown to decrease the estimation error to 0.34 GtC yr-1.
CC : 001E02D04; 001D16C02
FD : Troposphère; Cycle carbone; Bilan carboné; Composé trace; Carbone dioxyde; Relation source puits; Donnée observation; Réseau observation; Densité flux; Interpolation; Krigeage; Géostatistique; Estimation erreur; Cartographie; Amérique du Nord; Gaz effet serre
ED : troposphere; carbon cycle; Carbon balance; Trace compound; Carbon dioxide; Source sink relationship; Observation data; Observational network; Flux density; interpolation; kriging; geostatistics; Error estimation; cartography; North America; greenhouse gas
SD : Balance de carbono; Compuesto huella; Carbono dióxido; Relación fuente sumidero; Dato observación; Red observación; Densidad flujo; Geoestadística; Estimación error; Cartografía; America del norte
LO : INIST-2121B.354000158790680040
ID : 07-0048412

Links to Exploration step

Pascal:07-0048412

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">A direct carbon budgeting approach to infer carbon sources and sinks. Design and synthetic application to complement the NACP observation network</title>
<author>
<name sortKey="Crevoisier, Cyril" sort="Crevoisier, Cyril" uniqKey="Crevoisier C" first="Cyril" last="Crevoisier">Cyril Crevoisier</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Atmospheric and Oceanic Sciences, Princeton University, Sayre Hall, Forrestal Campus</s1>
<s2>Princeton, NJ 08544</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Gloor, Manuel" sort="Gloor, Manuel" uniqKey="Gloor M" first="Manuel" last="Gloor">Manuel Gloor</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Atmospheric and Oceanic Sciences, Princeton University, Sayre Hall, Forrestal Campus</s1>
<s2>Princeton, NJ 08544</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Gloaguen, Erwan" sort="Gloaguen, Erwan" uniqKey="Gloaguen E" first="Erwan" last="Gloaguen">Erwan Gloaguen</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Atmospheric and Oceanic Sciences, Princeton University, Sayre Hall, Forrestal Campus</s1>
<s2>Princeton, NJ 08544</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Horowitz, Larry W" sort="Horowitz, Larry W" uniqKey="Horowitz L" first="Larry W." last="Horowitz">Larry W. Horowitz</name>
<affiliation>
<inist:fA14 i1="02">
<s1>Geophysical Fluid Dynamics Laboratory, Forrestal Campus, 201 Forrestal Road</s1>
<s2>Princeton, NJ 08540-6649</s2>
<s3>USA</s3>
<sZ>4 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Sarmiento, Jorge L" sort="Sarmiento, Jorge L" uniqKey="Sarmiento J" first="Jorge L." last="Sarmiento">Jorge L. Sarmiento</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Atmospheric and Oceanic Sciences, Princeton University, Sayre Hall, Forrestal Campus</s1>
<s2>Princeton, NJ 08544</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Sweeney, Colm" sort="Sweeney, Colm" uniqKey="Sweeney C" first="Colm" last="Sweeney">Colm Sweeney</name>
<affiliation>
<inist:fA14 i1="03">
<s1>NOAA/ESRL Global Monitoring Division (formerly CMDL), 325 Broadway R/GMD1</s1>
<s2>Boulder, CO 80305-3328</s2>
<s3>USA</s3>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Tans, Pieter P" sort="Tans, Pieter P" uniqKey="Tans P" first="Pieter P." last="Tans">Pieter P. Tans</name>
<affiliation>
<inist:fA14 i1="03">
<s1>NOAA/ESRL Global Monitoring Division (formerly CMDL), 325 Broadway R/GMD1</s1>
<s2>Boulder, CO 80305-3328</s2>
<s3>USA</s3>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">INIST</idno>
<idno type="inist">07-0048412</idno>
<date when="2006">2006</date>
<idno type="stanalyst">PASCAL 07-0048412 INIST</idno>
<idno type="RBID">Pascal:07-0048412</idno>
<idno type="wicri:Area/PascalFrancis/Corpus">000144</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a">A direct carbon budgeting approach to infer carbon sources and sinks. Design and synthetic application to complement the NACP observation network</title>
<author>
<name sortKey="Crevoisier, Cyril" sort="Crevoisier, Cyril" uniqKey="Crevoisier C" first="Cyril" last="Crevoisier">Cyril Crevoisier</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Atmospheric and Oceanic Sciences, Princeton University, Sayre Hall, Forrestal Campus</s1>
<s2>Princeton, NJ 08544</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Gloor, Manuel" sort="Gloor, Manuel" uniqKey="Gloor M" first="Manuel" last="Gloor">Manuel Gloor</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Atmospheric and Oceanic Sciences, Princeton University, Sayre Hall, Forrestal Campus</s1>
<s2>Princeton, NJ 08544</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Gloaguen, Erwan" sort="Gloaguen, Erwan" uniqKey="Gloaguen E" first="Erwan" last="Gloaguen">Erwan Gloaguen</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Atmospheric and Oceanic Sciences, Princeton University, Sayre Hall, Forrestal Campus</s1>
<s2>Princeton, NJ 08544</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Horowitz, Larry W" sort="Horowitz, Larry W" uniqKey="Horowitz L" first="Larry W." last="Horowitz">Larry W. Horowitz</name>
<affiliation>
<inist:fA14 i1="02">
<s1>Geophysical Fluid Dynamics Laboratory, Forrestal Campus, 201 Forrestal Road</s1>
<s2>Princeton, NJ 08540-6649</s2>
<s3>USA</s3>
<sZ>4 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Sarmiento, Jorge L" sort="Sarmiento, Jorge L" uniqKey="Sarmiento J" first="Jorge L." last="Sarmiento">Jorge L. Sarmiento</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Atmospheric and Oceanic Sciences, Princeton University, Sayre Hall, Forrestal Campus</s1>
<s2>Princeton, NJ 08544</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Sweeney, Colm" sort="Sweeney, Colm" uniqKey="Sweeney C" first="Colm" last="Sweeney">Colm Sweeney</name>
<affiliation>
<inist:fA14 i1="03">
<s1>NOAA/ESRL Global Monitoring Division (formerly CMDL), 325 Broadway R/GMD1</s1>
<s2>Boulder, CO 80305-3328</s2>
<s3>USA</s3>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Tans, Pieter P" sort="Tans, Pieter P" uniqKey="Tans P" first="Pieter P." last="Tans">Pieter P. Tans</name>
<affiliation>
<inist:fA14 i1="03">
<s1>NOAA/ESRL Global Monitoring Division (formerly CMDL), 325 Broadway R/GMD1</s1>
<s2>Boulder, CO 80305-3328</s2>
<s3>USA</s3>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
</analytic>
<series>
<title level="j" type="main">Tellus. Series B, Chemical and physical meteorology</title>
<title level="j" type="abbreviated">Tellus, Ser. B Chem. phys. meteorol.</title>
<idno type="ISSN">0280-6509</idno>
<imprint>
<date when="2006">2006</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<title level="j" type="main">Tellus. Series B, Chemical and physical meteorology</title>
<title level="j" type="abbreviated">Tellus, Ser. B Chem. phys. meteorol.</title>
<idno type="ISSN">0280-6509</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Carbon balance</term>
<term>Carbon dioxide</term>
<term>Error estimation</term>
<term>Flux density</term>
<term>North America</term>
<term>Observation data</term>
<term>Observational network</term>
<term>Source sink relationship</term>
<term>Trace compound</term>
<term>carbon cycle</term>
<term>cartography</term>
<term>geostatistics</term>
<term>greenhouse gas</term>
<term>interpolation</term>
<term>kriging</term>
<term>troposphere</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Troposphère</term>
<term>Cycle carbone</term>
<term>Bilan carboné</term>
<term>Composé trace</term>
<term>Carbone dioxyde</term>
<term>Relation source puits</term>
<term>Donnée observation</term>
<term>Réseau observation</term>
<term>Densité flux</term>
<term>Interpolation</term>
<term>Krigeage</term>
<term>Géostatistique</term>
<term>Estimation erreur</term>
<term>Cartographie</term>
<term>Amérique du Nord</term>
<term>Gaz effet serre</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">In order to exploit the upcoming regular measurements of vertical carbon dioxide (CO
<sub>2</sub>
) profiles over North America implemented in the framework of the North American Carbon Program (NACP), we design a direct carbon budgeting approach to infer carbon sources and sinks over the continent using model simulations. Direct budgeting puts a control volume on top of North America, balances air mass in- and outflows into the volume and solves for the surface fluxes. The flows are derived from the observations through a geostatistical interpolation technique called Kriging combined with transport fields from weather analysis. The use of CO
<sub>2</sub>
vertical profiles simulated by the atmospheric transport model MOZART-2 at the planned 19 stations of the NACP network has given an estimation of the error of 0.39 GtC yr
<sup>-1</sup>
within the model world. Reducing this error may be achieved through a better estimation of mass fluxes associated with convective processes affecting North America. Complementary stations in the north-west and the north-east are also needed to resolve the variability of CO
<sub>2</sub>
in these regions. For instance, the addition of a single station near 52°N; 110°W is shown to decrease the estimation error to 0.34 GtC yr
<sup>-1</sup>
.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0280-6509</s0>
</fA01>
<fA02 i1="01">
<s0>TSBMD7</s0>
</fA02>
<fA03 i2="1">
<s0>Tellus, Ser. B Chem. phys. meteorol.</s0>
</fA03>
<fA05>
<s2>58</s2>
</fA05>
<fA06>
<s2>5</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>A direct carbon budgeting approach to infer carbon sources and sinks. Design and synthetic application to complement the NACP observation network</s1>
</fA08>
<fA09 i1="01" i2="1" l="ENG">
<s1>7th International CO
<sub>2</sub>
Conference, Boulder, Colorado, 25-30 September 2005</s1>
</fA09>
<fA11 i1="01" i2="1">
<s1>CREVOISIER (Cyril)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>GLOOR (Manuel)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>GLOAGUEN (Erwan)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>HOROWITZ (Larry W.)</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>SARMIENTO (Jorge L.)</s1>
</fA11>
<fA11 i1="06" i2="1">
<s1>SWEENEY (Colm)</s1>
</fA11>
<fA11 i1="07" i2="1">
<s1>TANS (Pieter P.)</s1>
</fA11>
<fA12 i1="01" i2="1">
<s1>TANS (Pieter P.)</s1>
<s9>ed.</s9>
</fA12>
<fA14 i1="01">
<s1>Atmospheric and Oceanic Sciences, Princeton University, Sayre Hall, Forrestal Campus</s1>
<s2>Princeton, NJ 08544</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>5 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Geophysical Fluid Dynamics Laboratory, Forrestal Campus, 201 Forrestal Road</s1>
<s2>Princeton, NJ 08540-6649</s2>
<s3>USA</s3>
<sZ>4 aut.</sZ>
</fA14>
<fA14 i1="03">
<s1>NOAA/ESRL Global Monitoring Division (formerly CMDL), 325 Broadway R/GMD1</s1>
<s2>Boulder, CO 80305-3328</s2>
<s3>USA</s3>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
</fA14>
<fA15 i1="01">
<s1>NOAA/Climate Monitoring and Diagnostics Laboratory, 325 Broadway</s1>
<s2>Boulder, CO 80303</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
</fA15>
<fA20>
<s1>366-375</s1>
</fA20>
<fA21>
<s1>2006</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>2121B</s2>
<s5>354000158790680040</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2007 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>13 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>07-0048412</s0>
</fA47>
<fA60>
<s1>P</s1>
<s2>C</s2>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Tellus. Series B, Chemical and physical meteorology</s0>
</fA64>
<fA66 i1="01">
<s0>GBR</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>In order to exploit the upcoming regular measurements of vertical carbon dioxide (CO
<sub>2</sub>
) profiles over North America implemented in the framework of the North American Carbon Program (NACP), we design a direct carbon budgeting approach to infer carbon sources and sinks over the continent using model simulations. Direct budgeting puts a control volume on top of North America, balances air mass in- and outflows into the volume and solves for the surface fluxes. The flows are derived from the observations through a geostatistical interpolation technique called Kriging combined with transport fields from weather analysis. The use of CO
<sub>2</sub>
vertical profiles simulated by the atmospheric transport model MOZART-2 at the planned 19 stations of the NACP network has given an estimation of the error of 0.39 GtC yr
<sup>-1</sup>
within the model world. Reducing this error may be achieved through a better estimation of mass fluxes associated with convective processes affecting North America. Complementary stations in the north-west and the north-east are also needed to resolve the variability of CO
<sub>2</sub>
in these regions. For instance, the addition of a single station near 52°N; 110°W is shown to decrease the estimation error to 0.34 GtC yr
<sup>-1</sup>
.</s0>
</fC01>
<fC02 i1="01" i2="2">
<s0>001E02D04</s0>
</fC02>
<fC02 i1="02" i2="X">
<s0>001D16C02</s0>
</fC02>
<fC03 i1="01" i2="2" l="FRE">
<s0>Troposphère</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="2" l="ENG">
<s0>troposphere</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="2" l="FRE">
<s0>Cycle carbone</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="2" l="ENG">
<s0>carbon cycle</s0>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="X" l="FRE">
<s0>Bilan carboné</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="ENG">
<s0>Carbon balance</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="SPA">
<s0>Balance de carbono</s0>
<s5>03</s5>
</fC03>
<fC03 i1="04" i2="X" l="FRE">
<s0>Composé trace</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="ENG">
<s0>Trace compound</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="SPA">
<s0>Compuesto huella</s0>
<s5>04</s5>
</fC03>
<fC03 i1="05" i2="X" l="FRE">
<s0>Carbone dioxyde</s0>
<s2>NK</s2>
<s2>FX</s2>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="ENG">
<s0>Carbon dioxide</s0>
<s2>NK</s2>
<s2>FX</s2>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="SPA">
<s0>Carbono dióxido</s0>
<s2>NK</s2>
<s2>FX</s2>
<s5>05</s5>
</fC03>
<fC03 i1="06" i2="X" l="FRE">
<s0>Relation source puits</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="ENG">
<s0>Source sink relationship</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="SPA">
<s0>Relación fuente sumidero</s0>
<s5>06</s5>
</fC03>
<fC03 i1="07" i2="X" l="FRE">
<s0>Donnée observation</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="ENG">
<s0>Observation data</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="SPA">
<s0>Dato observación</s0>
<s5>07</s5>
</fC03>
<fC03 i1="08" i2="X" l="FRE">
<s0>Réseau observation</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="ENG">
<s0>Observational network</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="SPA">
<s0>Red observación</s0>
<s5>08</s5>
</fC03>
<fC03 i1="09" i2="X" l="FRE">
<s0>Densité flux</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="ENG">
<s0>Flux density</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="SPA">
<s0>Densidad flujo</s0>
<s5>09</s5>
</fC03>
<fC03 i1="10" i2="2" l="FRE">
<s0>Interpolation</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="2" l="ENG">
<s0>interpolation</s0>
<s5>10</s5>
</fC03>
<fC03 i1="11" i2="2" l="FRE">
<s0>Krigeage</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="2" l="ENG">
<s0>kriging</s0>
<s5>11</s5>
</fC03>
<fC03 i1="12" i2="2" l="FRE">
<s0>Géostatistique</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="2" l="ENG">
<s0>geostatistics</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="2" l="SPA">
<s0>Geoestadística</s0>
<s5>12</s5>
</fC03>
<fC03 i1="13" i2="X" l="FRE">
<s0>Estimation erreur</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="X" l="ENG">
<s0>Error estimation</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="X" l="SPA">
<s0>Estimación error</s0>
<s5>13</s5>
</fC03>
<fC03 i1="14" i2="2" l="FRE">
<s0>Cartographie</s0>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="2" l="ENG">
<s0>cartography</s0>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="2" l="SPA">
<s0>Cartografía</s0>
<s5>14</s5>
</fC03>
<fC03 i1="15" i2="2" l="FRE">
<s0>Amérique du Nord</s0>
<s5>28</s5>
</fC03>
<fC03 i1="15" i2="2" l="ENG">
<s0>North America</s0>
<s5>28</s5>
</fC03>
<fC03 i1="15" i2="2" l="SPA">
<s0>America del norte</s0>
<s5>28</s5>
</fC03>
<fC03 i1="16" i2="2" l="FRE">
<s0>Gaz effet serre</s0>
<s5>36</s5>
</fC03>
<fC03 i1="16" i2="2" l="ENG">
<s0>greenhouse gas</s0>
<s5>36</s5>
</fC03>
<fN21>
<s1>029</s1>
</fN21>
</pA>
<pR>
<fA30 i1="01" i2="1" l="ENG">
<s1>International CO
<sub>2</sub>
Conference</s1>
<s2>7</s2>
<s3>Boulder, CO USA</s3>
<s4>2005-09-25</s4>
</fA30>
</pR>
</standard>
<server>
<NO>PASCAL 07-0048412 INIST</NO>
<ET>A direct carbon budgeting approach to infer carbon sources and sinks. Design and synthetic application to complement the NACP observation network</ET>
<AU>CREVOISIER (Cyril); GLOOR (Manuel); GLOAGUEN (Erwan); HOROWITZ (Larry W.); SARMIENTO (Jorge L.); SWEENEY (Colm); TANS (Pieter P.); TANS (Pieter P.)</AU>
<AF>Atmospheric and Oceanic Sciences, Princeton University, Sayre Hall, Forrestal Campus/Princeton, NJ 08544/Etats-Unis (1 aut., 2 aut., 3 aut., 5 aut.); Geophysical Fluid Dynamics Laboratory, Forrestal Campus, 201 Forrestal Road/Princeton, NJ 08540-6649/Etats-Unis (4 aut.); NOAA/ESRL Global Monitoring Division (formerly CMDL), 325 Broadway R/GMD1/Boulder, CO 80305-3328/Etats-Unis (6 aut., 7 aut.); NOAA/Climate Monitoring and Diagnostics Laboratory, 325 Broadway/Boulder, CO 80303/Etats-Unis (1 aut.)</AF>
<DT>Publication en série; Congrès; Niveau analytique</DT>
<SO>Tellus. Series B, Chemical and physical meteorology; ISSN 0280-6509; Coden TSBMD7; Royaume-Uni; Da. 2006; Vol. 58; No. 5; Pp. 366-375; Bibl. 13 ref.</SO>
<LA>Anglais</LA>
<EA>In order to exploit the upcoming regular measurements of vertical carbon dioxide (CO
<sub>2</sub>
) profiles over North America implemented in the framework of the North American Carbon Program (NACP), we design a direct carbon budgeting approach to infer carbon sources and sinks over the continent using model simulations. Direct budgeting puts a control volume on top of North America, balances air mass in- and outflows into the volume and solves for the surface fluxes. The flows are derived from the observations through a geostatistical interpolation technique called Kriging combined with transport fields from weather analysis. The use of CO
<sub>2</sub>
vertical profiles simulated by the atmospheric transport model MOZART-2 at the planned 19 stations of the NACP network has given an estimation of the error of 0.39 GtC yr
<sup>-1</sup>
within the model world. Reducing this error may be achieved through a better estimation of mass fluxes associated with convective processes affecting North America. Complementary stations in the north-west and the north-east are also needed to resolve the variability of CO
<sub>2</sub>
in these regions. For instance, the addition of a single station near 52°N; 110°W is shown to decrease the estimation error to 0.34 GtC yr
<sup>-1</sup>
.</EA>
<CC>001E02D04; 001D16C02</CC>
<FD>Troposphère; Cycle carbone; Bilan carboné; Composé trace; Carbone dioxyde; Relation source puits; Donnée observation; Réseau observation; Densité flux; Interpolation; Krigeage; Géostatistique; Estimation erreur; Cartographie; Amérique du Nord; Gaz effet serre</FD>
<ED>troposphere; carbon cycle; Carbon balance; Trace compound; Carbon dioxide; Source sink relationship; Observation data; Observational network; Flux density; interpolation; kriging; geostatistics; Error estimation; cartography; North America; greenhouse gas</ED>
<SD>Balance de carbono; Compuesto huella; Carbono dióxido; Relación fuente sumidero; Dato observación; Red observación; Densidad flujo; Geoestadística; Estimación error; Cartografía; America del norte</SD>
<LO>INIST-2121B.354000158790680040</LO>
<ID>07-0048412</ID>
</server>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Musique/explor/MozartV1/Data/PascalFrancis/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000144 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PascalFrancis/Corpus/biblio.hfd -nk 000144 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Musique
   |area=    MozartV1
   |flux=    PascalFrancis
   |étape=   Corpus
   |type=    RBID
   |clé=     Pascal:07-0048412
   |texte=   A direct carbon budgeting approach to infer carbon sources and sinks. Design and synthetic application to complement the NACP observation network
}}

Wicri

This area was generated with Dilib version V0.6.20.
Data generation: Sun Apr 10 15:06:14 2016. Site generation: Tue Feb 7 15:40:35 2023